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A complete characterisation is given, in terms of Fourier transforms, of pairs of
refinable univariate spline functions, with knots at the integers, whose integer
translates form a Riesz basis. � 1997 Academic Press

1. INTRODUCTION

One of the elegant and useful properties of spline functions with uniform
knots is that they are refinable, i.e., they are linear combinations of trans-
lates of dilates of themselves. This property results in efficient subdivision
algorithms for their evaluation and allows the construction of spline wavelets.
In their recent paper [6], Lawton et al. characterise which spline functions
with compact support are refinable and show, in particular, that the integer
translates of such a function can form a Riesz basis if and only if the function
is a uniform B-spline.

In [6] it is assumed that we have only one refinable function. However,
the construction of wavelets from refinable splines has been extended to
more than one refinable function [3]. In this paper we consider pairs of
refinable splines with integer knots. This is radically different from the case
of only one refinable function since there are pairs of refinable spline func-
tions whose integer translates from Riesz bases but which have different
continuity conditions than the usually considered B-splines. Indeed, to our
knowledge, these basis functions have not been considered before. If we
allow non-integer knots, then there is still greater flexibility and in [1, 8]
this freedom has been used to construct refinable splines whose integer
translates are orthonormal. This possibility is not considered here.

The natural tool for analysing refinable functions is the Fourier trans-
form. In Section 2 we classify the Fourier transforms of any compactly
supported splines and then show that refinability forces the Fourier trans-
forms to take a particular form involving two trigonometric polynomials.
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We than give in Section 3 explicit characterisations of such spline functions
whose integer translates form a Riesz basis, and verify that they span the
space of all spline functions with certain continuity conditions at the
integers. Finally, in Section 4, we show how our characterisation gives, as
a special case, the usual B-splines with double knots at the integers.

2. REFINABLE SPLINES

We shall first characterise the Fourier transform of a spline function. The
Fourier transform of a function , will be denoted by ,� and is defined by

,� (u) :=|
�

&�
,(x) e2?ixu dx.

Lemma 1. Let , be a spline function of degree n with knots t0< } } } <tm

and support [t0 , tm] and for j=0, ..., m, k=0, ..., n, let aj, k=,(k)(t+
j )&

,(k)(t&
j ). Then ,� is continuous, and for u{0, ,� (u)=�(u), where

�(u)= :
m

j=0

:
n

k=0

aj, k
e2?iutj

(&2?iu)k+1. (2.1)

Conversely, if � is continuous and given by (2.1) for u{0 and constants aj, k

and t0< } } } <tm , then �=,� , where , is a spline function as above.

Proof. Since , is L1, ,� is continuous. That ,� =� as given by (2.1)
follows by integration by parts, as pointed out in [6].

Conversely, suppose that � is continuous and given by (2.1) for u{0.
Let , be the spline function with support on [t0 , tm] satisfying

,(k)(t+
j )&,(k)(t&

j )=aj, k , j=0, ..., m&1, k=0, ..., n.

Then by the first part of Lemma 1,

,� (u)=�(u)+ :
n

k=0

bk
e2?iut m

(&2?iu)k+1 , u{0,

for constants b0 , ..., bn . Since both ,� and � are continuous at u=0, we
must have b0= } } } =bn=0. K

Now let ,1 , ,2 be compactly supported spline functions of degree n with
knots at the integers. We suppose that ,=(,1 , ,2)T is m-refinable; i.e., for
some integer m�2, , satisfies a refinement equation

,(x)= :
N

j=&N

A( j) ,(mx& j), x # R, (2.2)
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where for j=&N, ..., N, A( j) is a 2_2 matrix. By Lemma 1 we see that

,� (u)= :
n

j=0

u& j&1Tj (u), u{0, (2.3)

where for j=0, ..., n,

Tj (u)=: al, j e2?ilu, (2.4)

where al, j # R2 and the summation is over some finite sets of integers 1.
Taking Fourier transforms of (2.2) gives

,� (u)=
1
m

C(e2?iu�m) ,� \ u
m+ , (2.5)

where

C(z)= :
N

j=&N

A( j) z j, |z|=1. (2.6)

Substituting (2.3) into (2.5) and equating powers of u gives, as in [6],

Tj (u)=m jC(e2?iu�m) Tj \ u
m+ , j=0, ..., n. (2.7)

We now show that there are only two non-zero terms in the summation
in (2.3).

Lemma 2. If ,1 , ,2 are compactly supported spine functions of degree n
with knots at the integers and ,=(,1 , ,2)T is m-refinable, then for some
0� j�k�n,

,� (u)=u& j&1Tj (u)+u&k&1Tk(u), u{0, (2.8)

where Tj and Tk are trigonometric polynomials as in (2.4).

Proof. If only one of the trigonometric polynomials T0 , ..., Tn in (2.3)
does not vanish identically, then (2.8) certainly holds. So we may suppose
that for some 0� j�k�n, Tj and Tk do not vanish identically.

We claim that there is some u for which the 2-vectors Tj (u) and Tk(u)
are linearly independent. Suppose this is not the case. Then there is a scalar
function *(u) such that whenever Tj (u){0,

Tk(u)=*(u) Tj (u). (2.9)

370 T. N. T. GOODMAN



File: DISTIL 310504 . By:DS . Date:26:11:97 . Time:15:33 LOP8M. V8.0. Page 01:01
Codes: 2118 Signs: 1010 . Length: 45 pic 0 pts, 190 mm

Now let Tj (u)=(e2?iu&1) l T� j (u), Tk(u)=(e2?iu&1)P T� k(u), where T� j (0){
0{T� k(0) and let I be a neighbourhood of 0 on which T� j and T� k do not
vanish. From (2.7),

Tj (u)=m jC(e2?iu�m) Tj \ u
m+ ,

Tk(u)=mkC(e2?iu�m) Tk \ u
m+ ,

and applying (2.9) gives

mkC(e2?iu�m) * \ u
m+ Tj \ u

m+=*(u) m jC(e2?iu�m) Tj \ u
m+ .

For u in I with u{0 we have Tj (u){0 and so C(e2?iu�m) Tj (u�m){0. Thus

mk* \ u
m+=m j*(u),

(2.10)

* \ u
m+=m j&k*(u).

Hence limu � 0*(u)=0 and so p>l. Thus we can suppose

*(u)=(e2?iu&1) p&l T� k(u)
T� j (u)

, u # I. (2.11)

Differentiating (2.10) gives

*(r) \ u
m+=m j&k+r*(r)(u), r=0, 1, ..., u # I. (2.12)

Putting r=k& j+1 and applying (2.12) s times gives

*(k& j+1) \ u
ms+=ms*(k& j+1)(u), u # I. (2.13)

If *(k& j+1)(u){0 for any u in I, then (2.13) would contradict * being
analytic at u=0. Thus *(k& j+1) vanishes identially on I so * is an algebraic
polynomial of degree k& j, which contradicts (2.11).

So there is some u such that Tj (u) and Tk(u) are linearly independent.
Let T denote the 2_2 matrix [Tj Tk]. Then det T is a trigonometric
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polynomial, and since it does not vanish identially, there is some neigh-
bourhood J of 0 such that T is non-singular for u in J, u{0. Now by (2.7),

T (u)=C(e2?iu�m) T \ u
m+_

m j

0
0

mk&
=C(e2?iu�m)...C(e2?iu�m r

) T \ u
mr+_mrj

0
0

mrk& ,

for r=1, 2, ... . Also from (2.5), for r=1, 2, ...,

,� (u)=
1

mr C(e2?iu�m)...C(e2?iu�mr
) ,� \ u

mr+
and so for u in J, u{0,

,� (u)=
1

mr T (u) _m&rj

0
0

m&rk& T \ u
mr+

&1

,� \ u
mr+ .

Hence

lim
r � �_

m&r( j+1)

0
0

m&r(k+1)& T \ u
mr+

&1

,� \ u
mr+=T (u)&1 ,� (u). (2.14)

Expanding in a Taylor series about u=0 we can write

T (u)&1 ,� (u)=(e2?iu&1)&q _au:+0(u:+1)
bu;+0(u;+1)&

for some non-negative integers q, :, ;, and non-zero constants a, b. Then
from (2.14),

T (u)&1 ,� (u)= lim
r � �

(e2?iu�mr
&1)&q _au:m&r( j+1+:)

bu;m&r(k+1+;)&
=(2?i)&q lim

r � � _au:&qm&r( j+1+:&q)

bu;&qm&r(k+1+;&q)& .

We must have either limr � �u:&qm&r( j+1+:&q)=0 or j+1+:&q=0, in
which case limr � � u:&qm&r( j+1+:&q)=u& j&1. There is a similar result for
the second row and hence

,� (u)=T (u) _cu& j&1

du&k&1&=cu& j&1Tj (u)+du&k&1Tk(u)

for some constants c and d. Comparison with (2.3) gives the result. K
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We note that by Lemma 1 the functions ,1 , ,2 given by (2.8) have
discontinuities only in the derivatives of order j and k. Since ,1 and ,2 have
compact support, they have exact degree j or k depending on whether or
not the corresponding component of Tk vanishes identically.

3. RIESZ BASES

In addition to the conditions on , in the last section we now impose the
condition that the integer translates of ,1 , ,2 form a Riesz basis, i.e., there
are constants A>0, B>0 such that for any a=(aj)

�
&� in l2,

A&a&l 2�" :
�

&�

a2 j,1( } & j)+ :
�

&�

a2 j+1,2( } & j )"L 2
�B &a&l 2 .

We shall use the following result, which is a special case of Theorem 5.1 of
[5] and Lemma 3 of [2].

Lemma A. If ,1 , ,2 in L1(R) have compact support, then the integer
translates of ,1 , ,2 form a Riesz basis if and only if the vectors (,� 1(u+r))�

r=&�

and (,� 2(u+r))�
r=&� are linearly independent for all u.

We now state our main result. Throughout the rest of the paper we shall
write z=e2?iu.

Theorem 1. For an integer k�2 and functions ,1 , ,2 the following are
equivalent:

(a) The functions ,1 , ,2 are compactly supported spline functions of
degree k&1 with knots at the integers and at least one of ,1 , ,2 has exact
degree k&1. Moreover, the integer translates of ,1 , ,2 form a Riesz basis
and ,=(,1 , ,2)T is m-refinable for some m�2.

(b) For an integer j, 1� j�k&1,

_,� 1(u)
,� 2(u)&=M(z)_1

0
& p(z)
(z&1)k&_ (2?iu)& j

(2?iu)&k& , (3.1)

where p(z) is the Taylor polynomial of degree k&1 at z=1 for (log z)k& j

and M is a 2_2 matrix of Laurent polynomials with det M(z)=czl for some
constant c{0 and integer l.

(c) For an integer j, 1� j�k&1,

_,� 1(u)
,� 2(u)&=L(z)_ &q(z)

(z&1) j

(z&1)k& j

0 &_(2?iu)& j

(2?iu)&k& , (3.2)
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where L is of the same form as M in (3.1) and q(z) is the Taylor polynomial
of degree j&1 at z=1 for (z&1�log z)k& j.

Proof. Suppose that (a) is satisfied. Then by Lemma 2, we may write

,� (u)=(2?iu)& j P(z)+(2?iu)&k Q(z) (3.3)

for some j, 1� j�k&1, and Laurent polynomials P and Q. Since ,� (0)
is finite, (2?iu)k& j P(z)+Q(z) has a zero of order k at u=0, i.e.,
(log z)k& jP(z)+Q(z) has a zero of order k at z=1. Defining p as in (b) we
see that (log z)k& j& p(z) also has a zero of order k at z=1 and thus so
does

(log z)k& j P(z)+Q(z)&((log z)k& j& p(z)) P(z)=Q(z)+ p(z) P(z). (3.4)

Hence we can write

p(z) P(z)+Q(z)=(z&1)k R(z) (3.5)

for some Laurent polynomial R(z). So from (3.3),

,� (u)=[P(z) Q(z)] _ (2?iu)& j

(2?iu)&k&
=[P(z)& p(z) P(z)+(z&1)k R(z)] _ (2?iu)& j

(2?iu)&k&
=[P(z) R(z)] _1

0
&p(z)
(z&1)k&_ (2?iu)& j

(2?iu)&k& . (3.6)

To establish (b) it remains only to show that M(z) :=[P(z) R(z)] has
determinant of form czl. From (3.3) and Lemma A we know that the two
components of

P(z)(2?i)& j ((u+r)& j )�
r=&�+Q(z)(2?i)&k((u+r)&k)�

r=&� (3.7)

are linearly independent for all u. Thus for 0<u<1, the matrix [P(z) Q(z)]
is non-singular and so [P(z) R(z)] is non-singular.

We next consider the case u=0. Putting u=0, r=0, in (3.7) gives

lim
u � 0

[P(z)(2?iu)& j+Q(z)(2?iu)&k]

= lim
z � 1{

(log z)k& j& p(z)
(log z)k P(z)+

(z&1)k

(log z)k R(z)=
=aP(1)+R(1)

374 T. N. T. GOODMAN



File: DISTIL 310508 . By:DS . Date:26:11:97 . Time:15:33 LOP8M. V8.0. Page 01:01
Codes: 2596 Signs: 1649 . Length: 45 pic 0 pts, 190 mm

for some constant a{0. Since Q(1)=0, (3.7) becomes

{ P(1)(2?ir)& j

aP(1)+R(1),
r{0
r=0.

(3.8)

Since the two components of (3.8) are linearly independent, the matrix
[P(1) R(1)] is non-singular. Now from (3.3) and (2.5) we have

[P(e2?iu) Q(e2?iu)]=C(e2?iu�m)[m j&1P(e2?iu�m) mk&1Q(e2?iu�m)]

and so det[P(z) Q(z)] is a factor of det[P(zm) Q(zm)]. (In the terminology
of [3], det[P(z) Q(z)] is m-closed.) It follows that det[P(z) Q(z)] has its
zeros on the unit circle or at z=0. But

det[P(z) Q(z)]=(z&1)k det[P(z) R(z)]

and we know that det[P(z) R(z)] is non-zero on the unit circle. Thus
det[P(z) R(z)] can vanish only at z=0, i.e., it has the form czl, which
establishes (b).

We now assume that (b) holds and prove (a). Since (2?iu)& j&
p(z)(2?iu)&k=((log z)k& j& p(z))(2?iu)&k which is well-defined at u=0,
,� 1(0) and ,� 2(0) are well-defined and, by Lemma 1, ,1 and ,2 are
compactly supported spline functions of degree k&1 with knots at the
integers. Moreover, since M(z) is non-singular on the unit circle, at least
one of ,1 and ,2 has exact degree k&1.

We write M(z)=[P(z) R(z)] and M(z)[ 1
0

&p(z)
(z&1)k]=[P(z) Q(z)]. Since

det M(z)=czl, c{0, M(z) is non-singular whenever |z|=1. So the two
components of (3.7) are linearly independent for all u in (0,1). Moreover,
the two components of (3.8) are linearly independent and so the two
components of (3.7) are also linearly independent for u=0. Thus by
Lemma A, the integer translates of ,1 and ,2 form a Riesz basis.

It remains to show that ,=(,1 , ,2)T is m-refinable. Now

_1
0

&p(zm)
(zm&1)k&=C(z) _1

0
&p(z)
(z&1)k&_m j&1

0
0

mk&1& (3.9)

where

C(z) :=_
m1& j

0

mk& j( p(z)& p(zm)
mk&1(z&1)k

(zm&1)k

mk&1(z&1)k & .
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We note that, for &=0, ..., k&1,

�&

�z& p(zm) } z=1

=
�&

�z& log(zm)k& j } z=1

=mk& j �&

�z& (log z)k& j } z=1

=mk& jp(&)(1).

Thus mk& jp(z)& p(zm) is divisible by (z&1)k and so C(z) is a matrix of
polynomials. By (3.9),

M(zm) _1
0

&p(zm)
(zm&1)k&

=M(zm) C(z) M(z)&1 M(z) _1
0

&p(z)
(z&1)k&_m j&1

0
0

mk&1& ,

and so by (3.1),

_,� 1(mu)
,� 2(mu)&=

1
m

M(zm) C(z) M(z)&1 _,� 1(u)
,� 2(u)& . (3.10)

Since det M(z)=czl, c{0, M(z)&1 is a matrix of Laurent polynomials and
so (3.10) shows that , is m-refinable, which establishes (a).

Next we shall show that (b) implies (c). Assume that (b) holds and write
M(z)=[P(z) R(z)], Q(z)=&p(z) P(z)+(z&1)kR(z). Then

(log z)k& j P(z)+Q(z)=((log z)k& j& p(z)) P(z)+(z&1)k R(z),

which has a zero of order k at z=1. Thus Q(z) has a zero of order k& j
at z=1 and we may write

Q(z)=(z&1)k& j U(z) (3.11)

for some Laurent polynomial U(z). Then

P(z)+q(z) U(z)=(log z) j&k ((log z)k& j P(z)+Q(z))

+\q(z)&\z&1
log z+

k& j

+ U(z) (3.12)

which has a zero of order j at z=1. So for some Laurent polynomial V(z),

P(z)+q(z) U(z)=(z&1) j V(z). (3.13)
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Hence

[P(z) R(z)] _1
0

&p(z)
(z&1)k&=[P(z) Q(z)]

=[U(z) V(z)] _ &q(z)
(z&1) j

(z&1)k& j

0 & , (3.14)

by (3.11) and (3.13). Thus (3.1) gives (3.2) with L(z)=[U(z) V(z)] and
det L(z)=&det M(z).

Finally, we show that (c) implies (b). Assume that (c) holds and write
L(z)=[U(z) V(z)]. Define [P(z) Q(z)] by (3.14). Then (3.11) and (3.13)
hold. From (3.13), P(z)+q(z) U(z) has a zero of order j at z=1 and so by
(3.12), (log z)k& j P(z)+Q(z) has a zero of order k at z=1 and we may
write (3.5) for a Laurent polynomial R(z). Thus

[P(z) Q(z)]=[P(z) R(z)] _1
0

&p(z)
(z&1)k&

and (3.1) holds with M(z)=[P(z) R(z)] and det M(z)=&det L(z). K

Remarks. 1. The proof of Theorem 1 shows that a refinement equation
of form (2.2) has solutions satisfying (a) of Theorem 1 if and only if the
``symbol'' C(z) in (2.5) satisfies the following. For an integer j, 1� j�k&1,

C(z)=M(zm) _
m1& j

0

mk& jp(z)& p(zm)
mk&1(z&1)k

(zm&1)k

mk&1(z&1)k & M(z)&1,

where p and M are as in (b) of Theorem 1.

2. By taking suitable integer translates of ,1 and�or ,2 we may
assume that det M and det L are constants.

3. The functions ,1 and ,2 have discontinuities only in the derivatives
or order j&1 and k&1. In the choice (3.1) with M the identity, ,2 is the
usual B-spline of degree k&1 with simple knots and support [0, k]. Here
,1 has support on [0, k&1] with simple knots at 1, ..., k&1, while at 0 it
has discontinuities in derivatives of order j&1 and of order k&1. In the
choice (3.2) with L the identity, ,2 is the usual B-spline of degree j&1 with
simple knots and support [0, j]. Here ,1 has support on [0, max[ j&1,
k& j]]. If 2 j�k, then for j�l�k& j, ,1 has a discontinuity only in the
derivative of order k&1 at l. If 2 j�k+2, then ,1 has degree j&1 on
[k& j, j&1].
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4. The choice of M as the identity in (3.1) gives the minimum
number of discontinuities in the derivative of order j&1, while the choice
of L as the identity in (3.2) gives the minimum number of discontinuities
in the derivatives of order k&1. By choosing suitable matrices M in (2.1)
(or L in (2.2)) we can get intermediate cases, as illustrated in the following
examples.

Example 1: j=1. Here (3.1) with M as the identity becomes

_1
0

&(z&1)k&1

(z&1)k & , (3.15)

where we shall omit the term [(2?iu)& j (2?iu)&k]T. Then

_&1
z

0
1& _

1
0

&(z&1)k&1

(z&1)k &=_&1
z

(z&1)k&1

&(z&1)k&1& (3.16)

and

_ &1
z&1

0
1&_

1
0

&(z&1)k&1

(z&1)k &=_ &1
z&1

(z&1)k&1

0 & ,

which is the case (3.2) with L as the identity.

Example 2: k=4, j=2. Here (3.1) with M as the identity gives

A :=_1
0

(z&2)(z&1)2

(z&1)4 & .

Then

_ 1
&z

0
1& A=_ 1

&z
(z&2)(z&1)2

(z&1)2 & ,

_1
0

&z
2 &_ 1

&z
0
1& A=_1+z2

&2z
&2(z&1)2

2(z&1)2 & , (3.17)

and

_0
1

1
2&z&_

1
&z

0
1& A=_ &z

(z&1)2

(z&1)2

0 & ,

which is the case (3.2) with L as the identity.
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For applications such as computer-aided design it is sometimes useful to
choose a basis which forms a partition of unity, i.e.,

:
�

l=&�

(,1+,2)(x&l )=1, x # R. (3.18)

In fact, the integer translates of the functions ,1 , ,2 given by either (3.16)
or (3.17) form a partition of unity, which follows from our next result.

Theorem 2. The integer translates of the functions ,1 , ,2 given by (3.1)
form a partition of unity if and only if

[1 1] M(1)=[0 1].

Proof. Equation (3.18) is satisfied if and only if

,� 1(l )+,� 2(l )=$l, 0 , l # Z. (3.19)

Let [1 1] M(z)=[A(z) B(z)]. Then from (3.1),

,� 1(u)+,� 2(u)=A(z)[(2?iu)& j& p(z)(2?iu)&k]+B(z)(z&1)k (2?iu)&k.

(3.20)

For l in Z, l{0, recalling p(1)=0 gives

,� 1(l )+,� 2(l)=A(1)(2?il )& j. (3.21)

So if (3.19) is satisfied, then A(1)=0 and (3.20) gives

,� 1(0)+,� 2(0)=B(1),

which gives B(1)=1. Conversely, if A(1)=0, B(1)=1, then (3.20)
gives (3.19). K

Now for 1� j�k&1, we denote by Sj, k the set of all spline functions of
degree k&1 with knots at the integers and discontinuities only in derivates
of order j&1 and k&1. We know that the functions ,1 , ,2 of (b) or
(c) in Theorem 1 are such that their integer translates form a Riesz basis.
Our next result shows, in particular, that they form a Riesz basis for
Sj, k & L2(R).

Theorem 3. Let ,1 , ,2 be as in (b) or (c) of Theorem 1. Then any f in
Sj, k can be expressed uniquely in the form

f = :
�

l=&�

al,1( } &l)+ :
�

l=&�

bl,2( } &l), (3.22)

for some constants al , bl , l # Z.
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Proof. By Theorem 1, (b) and (c) are equivalent and so it suffices to
assume that ,1 , ,2 satisfy (b). We shall first consider the case when M is
the identity. In this case ,1 has a discontinuity in the derivative of order
j&1 only at 0 and by Lemma 1, , ( j&1)

1 (0+)&, ( j&1)
1 (0&)=(&1) j.

Take f in Sj, k and suppose that for l in Z, f ( j&1)(l+)& f ( j&1) (l&)=
(&1) j al . Let g= f&��

&� al ,1( } &l). Then g( j&1) has no discontinuities
and so g is a spline function of degree k&1 with simple knots. Since ,2 is
a B-spline of degree k&1 with simple knots, we may write

g= :
�

l=&�

bl ,2( } &l)

and so (3.22) holds. Now suppose that in (3.22), f is identically zero. Then
for all l in Z, al=(&1) j ( f ( j&1)(l+)& f ( j&1)(l&))=0. So ��

&� bl,2( } &l)
is identically zero and, by the linear independence of the B-splines ,2( } &l),
bl=0 for all l in Z. So our representation (3.22) is unique.

Now suppose that ,1 , ,2 are given by (b), for a general matrix M, as in
Theorem 1. Letting ,� 1 , ,� 2 denote the corresponding functions when M is
replaced by the identity, (3.1) shows that ,1 , ,2 are finite linear combina-
tions of integer translates of ,� 1 and ,� 2 . Since M(z)&1 is also a matrix of
Laurent polynomials, we also see that ,� 1 , ,� 2 are finite linear combinations
of integer translates of ,1 and ,2 . We have shown above that any f in Sj, k

can be expressed in the form (3.22). We have also shown that the integer
translates of ,� 1 and ,� 2 are linearly independent and it follows that the
integer translates of ,1 and ,2 are linearly independent; see Theorem 5.1
of [4]. K

Theorem 3 and Theorem 1 immediately give the following.

Corollary 1. Suppose that ,1 , ,2 are compactly supported spline func-
tions with knots at the integers which are m-refinable for some m�2. If their
integer translates form a Riesz basis, then they are linearly independent.

4. HERMITE SPLINES

In this section we consider the case j=k&1. Here a possible choice of
,1 , ,2 is the usual B-splines with double knots at the integers. We denote
the knots by tl , where

t2l=t2l+1=l, l # Z, (4.1)
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and denote by N k
l the B-spline of degree k&1 with knots tl , ..., tl+k .

Thus N k
l+2=N k

l( } &1), l # Z. The well-known recurrence relation for the
derivatives gives, for k�2,

N k+1$
l =

k
tl+k&tl

N k
l&

k
tl+k+1&tl+1

N k
l+1 ,

and so

&2?iuN� k+1
l (u)=

k
tl+k&tl

N� k
l(u)&

k
tl+k+1&tl+1

N� k
l(u). (4.2)

From Lemma 1 we may write

_N� k
0(u)

N� k
1(u)&=T k(z) _(2?iu)&k+1

(2?iu)&k & , (4.3)

where T k is a 2_2 matrix of polynomials. Substituting (4.3) into (4.2), and
noting that N� k

2(u)=zN� k
0(u), gives

T k+1(z)=k _&1
z

1
&1&_

(tk&t0)&1

0
0

(tk+1&t1)&1& T k(z).

Recalling (4.1) we see that

T 2r+1(z)=2 _&1
z

1
&1& T 2r(z), r�1,

(4.4)

T 2r(z)=(2r&1) _&1
z

1
&1&_

(r&1)&1

0
0

r&1& T 2r&1(z), r�2.

(4.5)

Direct calculation shows that

T 2(z)=_&1
z

z&1
1&z& . (4.6)

The recurrence relation (4.4)�(4.6) gives T k(z) as a product of matrices,
which gives N� k

0 , N� k
1 by (4.3). For further information on these B-splines, see

[7]. Now ,1=N k
0 , ,2=N k

1 satisfy (a) of Theorem 1 and so we may write
as in (3.1),

T k(z)=M(z) _1
0

&p(z)
(z&1)k& . (4.7)
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For example, when k=2, we have P(z)=z&1 and from (4.6)

T 2(z)=_&1
z

0
1&_

1
0

1&z
(z&1)2& . (4.8)

(Note that Theorem 2 confirms that the integer translates of N 2
0 and N 2

1

form a partition of unity.) Our next result gives an explicit representation
for M in (4.7).

Theorem 4. The B-splines N k
0 , N k

1 are given by

_N� k
0(u)

N� k
1(u)&=M k(z) _1

0
pk(z)

(z&1)k&_(2?iu)&k+1

(2?iu)&k & , (4.9)

where pk(z)=�k&1
l=1 ((1&z)l�l) and M k is defined as follows. For r�1,

M 2r(z)=\2r&1
r +_&r

0
0
1& A(1) `

r&1

l=1

B \ 2l

r2&l2+ A(2l+1), (4.10)

M2r+1(z)=\2r
r +_

&r
0

0
1&{ `

r

l=1

B \ 2l&1
(r+1&l)(r+l)+ A(2l)=_&1

0
0
1& ,

(4.11)

where

A(*)=_ 1
*z

0
1& , B(*)=_1

0
*
1& .

Proof. The proof is by induction on k. By (4.3) and (4.8) we see that
the result holds for k=2. Assume that it holds for k=2r, r�1. By (4.3),
(4.4), and (4.9),

_N� 2r+1
0 (u)

N� 2r+1
1 (u)&=2 _&1

z
1

&1& M2r(z) _1
0

p2r(z)
(z&1)2r&_ (2?iu)&2r

(2?iu)&2r&1& .

(4.12)

Now by straightforward calculation,

_&1
z

1
&1&_

&r
0

0
1& A(1)=_r

0
0

&1& B \ 1
r(r+1)+ _ 1

(r+1)z

1
r+1

1 & .

(4.13)
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Also for l=1, ..., r&1,

_ 1

(r+l)z

1
r+l

1 & B \ 2l

r2&l2+ A(2l+1)

=A(2l) _ 1

(r&l)z

1
r&l

1 & A(2l+1)

=A(2l) B \ 2l+1
(r&l)(r+l+1)+ _ 1

(r+l+1)z

1
r+l+1

1 & . (4.14)

Thus by (4.10), (4.13), and (4.14),

2 _&1
z

1
&1& M 2r(z)

=\2r
r +_

r
0

0
&1&{ `

r&1

l=1

B \ 2l&1
(r+1&l)(r+l)+ A(2l)=

_B \2r&1
2r + _ 1

2rz

1
2r
1 & . (4.15)

But

_ 1

2rz

1
2r
1 &=A(2r) _1

0

1
2r

1&z& (4.16)

and

_1

0

1
2r

1&z& _1
0

p2r(z)
(z&1)2r&=_1

0
0

&1&_
1
0

p2r+1(z)
(z&1)2r+1& . (4.17)

So combining (4.12), (4.15), (4.16), and (4.17) gives (4.9) for k=2r+1
with Mk given by (4.11).
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Now assume that the result holds for k=2r&1, r�2. Then recalling (4.5),

_N� 2r
0 (u)

N� 2r
1 (u)&=(2r&1) _&1

z
1

&1& _
1

r&1

0

0

1
r& M2r&1

__1
0

p2r&1(z)
(z&1)2r&1&_(2?iu)&2r+1

(2?iu)&2r & . (4.18)

Now

_&1
z

1
&1& _

1
r&1

0

0

1
r& _&r+1

0
0
1&=_

1

0

0

&
1
r&_ 1

rz

1
r
1& , (4.19)

and for l=1, ..., r&1,

_ 1

(r+l&1)z

1
r+l&1

1 & B \ 2l&1
(r&l)(r&1+l)+ A(2l)

=A(2l&1) _ 1

(r&l)z

1
r&l

1 & A(2l)

=A(2l&1) B \ 2l

r2&l2+ _ 1

(r+l)z

1
r+l

1 & . (4.20)

Thus by (4.11) (with r replaced by r&1), (4.19), and (4.20),

(2r&1) _&1
z

1
&1& _

1
r&1

0

0

1
r& M2r&1(z)

=\2r&1
r +_r

0
0

&1& A(1) { `
r&2

l=1

B \ 2l

r2&l2+ A(2l+1)=
_B \2r&2

2r&1+ _ 1

(2r&1)z

1
2r&1

1 & _&1
0

0
1& . (4.21)

384 T. N. T. GOODMAN



File: DISTIL 310518 . By:DS . Date:26:11:97 . Time:15:33 LOP8M. V8.0. Page 01:01
Codes: 4138 Signs: 1634 . Length: 45 pic 0 pts, 190 mm

But in a similar manner to (4.16) and (4.17),

_ 1

(2r&1)z

1
2r&1

1 & _&1
0

0
0&_

1
0

p2r&1(z)
(z&1)2r&1&

=&A(2r&1) _1
0

p2r(z)
(z&1)2r& . (4.22)

So combining (4.18), (4.21), and (4.22) gives (4.9) for k=2r, with Mk given
by (4.10). K
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